正规网投|正规网投
正规网投2023-01-31 16:05

无人智能作战有哪些优势******

  引言

  习主席在党的二十大报告中强调,加快无人智能作战力量发展。纵观近年来的局部战争实践,以无人机为代表的无人作战力量已经成为联合作战力量体系的重要组成部分,发挥着越来越突出的效能倍增器作用,特别是随着人工智能技术的迅猛发展及在军事领域的广泛运用,无人系统的智能化程度不断提升,自主能力持续增强,无人智能作战呈现出不同于以往的优势和效能。

  灵活性增强,能更有效达成突袭效果

  一般的无人系统因其较小的目标特征及隐身化的设计,具有实施突然袭击的先天优势,但由于依靠程序控制或指令控制模式,应变性较差,仅可借助相对有利的环境条件对固定或慢速目标进行袭击。而智能化无人系统可以不依赖后方控制,可依据预先赋予的作战权限,在更加复杂的战场环境下进行自主侦察、识别、决策和行动,灵活性不断增强,能够在更广泛的任务范围内实施突袭作战。

  可实现敏捷袭击。信息化战场上,敌方关键性高价值目标通常具有突然出现、时空随机的特点,对其进行打击受到严格的时间窗口限制,打击时机稍纵即逝,但一旦打击成功,将产生较好的作战效果并获得较高的作战效益。智能化无人系统自主能力强且具有较高的自主决策权,解决了后方指令控制在传输时间和平台反应上的延迟问题,能够借助长航时优势,以区域机动巡弋方式,对重要任务区进行持久地侦察监视,发现目标即能快速精准突击,有效把握战机。2020年1月,美军刺杀伊朗“圣城旅”最高指挥官苏莱曼尼的突袭行动,就是在其他情报信息支持下,使用具有一定智能化的MQ-9“死神”察打一体无人机,预先进入巴格达上空,对目标成功实施了侦搜和打击。

  可实现渗透袭击。进入敌方纵深核心区域对重要目标实施破袭,历来风险大、成功率低。随着小微型无人系统智能化水平的提升,它可以通过空投或炮射等方式撒播到敌纵深,再通过自身动力飞行或地面机动,自动比对数据,自主抵近预定目标或直接附着于大型武器系统关键部位上,甚至渗透进入敌作战决策、指挥系统等内部核心场所,进行侦察监视,适时利用所携带的高爆炸药对目标的要害和节点部位进行破坏,或施放高能量毒剂对关键、核心人员进行杀伤,实施“内窥式侦察”和“微创式打击”,可破坏敌作战体系、打乱敌作战计划、扰乱敌行动节奏,并形成强烈的心理震撼。2017年11月,联合国特定常规武器公约会议上展示的一款名为“杀人蜂”的高智能微型自主攻击机器人,尺寸不到普通人手掌大小,配有广角摄像头、战术传感器等,内装3克炸药,可集群使用,能够通过很小的孔隙飞入室内,进行精准识别和攻击。

  协同性增强,能更有效实施编组作战

  由于受智能化水平限制,一般的无人系统以及无人系统与有人系统之间的协同,主要按照预先规划在时间和空间上进行配合,遇到情况变化,需通过无人系统后方操控站进行协调,及时性、精确性差,难以适应极速变化的信息化战场,而智能化无人系统能够根据执行任务设定的初始状态、终止状态及过程约束等条件,自动保持编队机动与作战队形、自动规避威胁,并以最优路径和方式协同执行作战任务。

  能实施集群作战。无人系统智能自主水平的提升,是多个无人系统共同编组集群运用的物质条件,是有效发挥无人作战效能的重要基础。无人智能集群中,各作战平台能够根据不同的作战目的和任务需求,以作战目标为中心,通过互联互通互操作,相互交换信息,动态自主组合,协调一致地进行机动突击与整体防御。进攻作战时,能够高度协调地从多个方向连续或同时对预定目标实施攻击,使敌人应接不暇、防不胜防,在短时间内造成其作战体系瘫痪或关键部位毁伤,而且诱骗、干扰、电子攻击等软杀伤行动与火力硬摧毁行动能自动协调,以最佳时机进行配合,可避免相互影响及目标选择上的冲突,有效支持火力行动,提高整体作战效能。防御作战中,能够建立智能的自适应防御系统,在己方作战单元或需要防护的目标外围形成自动响应的保护“气泡”,构建立体、多层次拦截网,动态实施外围警戒、拦截和对威胁目标的灵活反应打击,保护海上或地面重要目标安全。

  能实施有人/无人协同作战。将有人作战力量与无人系统混合编组、一体作战,是随着无人智能作战力量发展而形成的一种重要作战模式,能够最大限度地发挥两者的互补增效优势,提高整体作战能力。作战中,根据作战任务、对抗强度和战场环境等条件,多个有人作战平台与无人作战平台依托先进信息和智能技术,动态匹配力量,灵活进行编组,并在负责编队指挥的有人作战力量规划控制下,智能化无人系统靠前配置,可迅速掌握战场态势,拓展预警探测范围;又可对火力进行精确指示引导,延伸有人作战平台的打击力臂,发挥其远程作战效能;还可实施先期作战,做到先敌发现、先敌攻击,为有人作战创造战机和有利条件。同时,又可使有人作战力量保持在敌威胁范围之外,从而减少遭受敌方攻击的可能性,提高战场生存能力。外军直升机/无人侦察机协同作战的效能评估显示,执行战术侦察任务的时间平均缩短了10%,识别目标的数据量增加了15%,机载人员生存性增加了25%,武器系统杀伤力增加了50%以上。

  可控性增强,能更有效提高指挥效能

  无人智能作战力量的智能化,是无人系统整体的智能化,不仅表现在无人作战平台的自主能力上,还体现在规划控制方面。无论是后方控制站的操控人员,还是有人/无人协同作战编队的指挥人员,智能化控制系统都能够辅助其快速、高效地完成任务规划、作战控制,极大地提高指挥效能。

  表现为平台控制通用化。无人系统的控制单元是整套无人系统的“大脑”,也是无人作战力量遂行任务的指挥节点,负责无人作战平台行动时的预先规划、投放/回收、信息处理、指令下达及与其他作战力量协同等任务。智能化控制系统,具备架构开放性和很强的互操作性,在极大降低操控人员工作负荷的同时,实现了由“一控一”向“一控多”的转变,即一个控制单元能够同时控制多个不同空间、不同任务类型的无人作战平台或无人集群,而且还能通过与多个不同的通信网络中的任何一个进行交互,实现与其他作战单元的信息共享与作战协同。加之智能无人作战平台自主控制能力增强,能够对指令信号上的微小错误或偏差进行自我纠正,也促进了对无人智能作战力量的高效指挥控制。外军提出并开展的“舰载无人系统通用控制”计划,就是要实现对舰载的各类型无人机及水面/水下无人系统的统一控制,从而有效协同海上作战力量行动。

  表现为人机交互快捷化。高效的人机交互是实现对无人作战平台有效控制的关键。智能化控制系统不仅能够自主完成态势感知、作战决策、任务规划等工作,而且能将相应成果以简捷、直观的形式全面呈现出来,使操控人员很好地理解并能以简单、直接的操作进行确认。特别是智能化操控系统中的人机交互界面,能够多模式接收、准确理解识别指控人员通过语音、手势、表情、脑电等基于生理特征的非接触式交互方式表达的意图,并快速将其转化为无人作战平台能够识别的任务指令,按需分发或下达,提高了交互效率和指挥控制效能。比如,外军的“无人机控制最佳角色分配管理控制系统”项目,由智能无人机自主行为软件和高级用户界面组成,系统界面针对多架无人机控制进行优化,配有具备触摸屏交互功能的玻璃座舱和辅助型目标识别系统,使1名直升机上的空中任务指挥官同时可有效控制3架无人机,在不增加工作负荷的情况下,提高了态势感知能力和执行任务成效。

  无人智能作战的独特优势,提高了无人智能作战力量的战场适应能力,使其能够在高动态、强对抗的复杂环境中,更加有效地与其他作战力量联合遂行作战任务。特别是随着未来“强人工智能”的实现,无人系统在具备更优的深度学习能力与更高的自主决策能力后,将对战争规则和作战方式产生颠覆性的影响。(赵先刚 苏艳琴)

正规网投

科学家成功合成铹的第14个同位素******

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

  近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

  此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

  不断进行探索,再次合成铹同位素

  铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

  质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

  103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

  截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

  目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

  通过熔合反应,形成新的原子核

  铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

  “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

  在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

  “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  拓展新的领域,推动超重核理论研究

  由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

  此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

  研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

  “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

中国网客户端

国家重点新闻网站,9语种权威发布

正规网投地图